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Further experiments on the evolution of turbulent 
stresses and scales in uniformly sheared turbulence 
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(Received 13 April 1987 and in revised form 23 January 1989) 

Measurements of the Reynolds stresses, integral lengthscales and Taylor microscales 
are reported for several cases of uniformly sheared turbulent flows with shear values 
in a range substantially wider than those of previous measurements. It is shown that 
such flows demonstrate a self-preserving structure, in which the dimensionless 
Reynolds stress ratios and the dissipation over production ratio, e/P,  remain 
essentially constant. Flows with sufficiently large k, = ( l /U, )dUJdx ,  have expo- 
nentially growing stresses and e/P % 0.68; a linear relationship between the 
coefficient in the exponential law and k, is shown to be compatible with measurements 
having k, > 3. The possibility of a self-preserving structure with asymptoticalIy 
constant stresses and e /P = 1.0 is also compatible with measurements, corresponding 
to flows with small values of k,. The integral lengthscales appear to grow according 
to a power law with an exponent of about 0.8, independent of the mean shear, while 
the Taylor microscales, in general, approach constant values. Various attempts to 
scale the stresses and to predict their evolution are discussed and the applicability of 
Hasen’s theory is scrutinized. Finally, an ‘exact ’ expression for the pressure-strain 
rate covariance is derived and compared to some popular models. 

_ _  

1. Introduction 
The concept of homogeneous turbulence subjected to a uniform mean shear has 

long attracted the attention of turbulence researchers, being a popular paradigm in 
the development and verification of turbulence theories. 

Analyses and computations concerning various aspects of such flows have been 
published by many investigators, including Reis (1952), Burgers & Mitchner (1953), 
Tchen (1953), Craya (1958), Deissler (1961, 1965, 1970), Fox (1964), Hasen (1967), 
Mhaanan, Ferziger & Reynolds (1977), Corrsin & Kollman (1977), Gence, Angel &, 
Mathieu (1978), Courseau & Loiseau (1978), Rogallo (1981), Cambon, Jeandel &, 
Mathieu (1981), Feiereisen et al. (1982), Rogallo & Moin (1984), Moin, Rogers & 
Moser (1985) and Tavoularis (1985). Since Corrsin’s (1963) initial suggestions for an 
experimental realization, flows with approximately uniform shear and transverse 
homogeneity have been generated in the laboratory by Rose (1966, 1970), Robertson 
& Johnson (1970), Champagne, Harris & Corrsin (1970), Hwang (1971), Mulhearn & 
Luxton (1975), Harris, Graham & Corrsin (1977), Tavoularis & Corrsin (1981a, b) ;  
Karnik (1983), Karnik & Tavoularis (1983), Sreenivasan (1985) and Rohr et al. 
( 1988). The available experimental studies were meant to approximate unbounded 
flows with constant shear. However, the finite size of wind tunnels, both in cross- 
section and in length, as well as the imposed geometry of the flow generator are 
factors limiting the validity of this analogy. 

Previous analyses and experiments have contributed to our understanding of the 
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influence of mean shear on the structure of turbulence. At the same time, it has 
become evident that uniformly sheared turbulent flows have their own distinct 
characteristics and that, perhaps, they deserve to  be treated as a class. The 
possibility of subdividing this class according to  some criterion also requires 
attention. Thus, one should be interested in resolving whether, for a given apparatus 
and upstream conditions, the turbulence structure would approach a self-preserving 
state and, if indeed a self-preserving state is reached, whether it would be universal 
or particular to a subclass of flows, distinct from the others. 

The objectives of the present study are to expand the range of available 
measurements and to  re-evaluate earlier results in an attempt to  provide a unified 
view of uniformly sheared turbulence. 

2. Measurements 
2.1. Experimental facility 

The wind tunnel and rclated apparatus that were used in the present experiments 
have been described by Karnik & Tavoularis (1987). The air flow was produced by 
two centrifugal blowers and passed through a filter, a honeycomb, a settling chamber 
with several turbulence-reducing screens and a 16 : 1 rectangular contraction before 
entering the final section which had a height h = 0.305 m. The sidewalls were about 
0.45 m apart and were adjusted for boundary-layer compensation. 

The desired mean velocity profile was produced with the use of a shear generator 
inserted in the flow immediately following the contraction. It consisted of 12 parallel 
channels, each with a height M = 25.4 mm and containing a number of screens 
selected to produce the desired pressure drop. To obtain uniformity of scales, the flow 
was directed through a flow separator, consisting of 12 channels, aligned with these 
in the shear generator. The test section also permitted the insertion of up to four 
frames containing either grids of parallel cylindrical rods (with solidity B = 0.378) or 
square-mesh woven gauzes (0.26 < u < 0.45). The spacing, Mg, between the grid or 
screen elements varied between 1.6 and 50.8 mm. The grids and screens were tested 
in a uniform flow and those which imparted significant non-uniformities to the mean 
and/or turbulent fields were discarded. 

The fluctuating velocity was measured with conventional hot-wire anemometers ; 
digital data acquisition and processing was done using a microcomputer. 

2.2 The mean shear 
Detailed measurements published earlier (Karnik & Tavoularis 1987) have 
demonstrated that the shear generator produced a mean velocity field with a uniform 
gradient which was preserved in the core of the entire test section and also exhibited 
fair spanwise uniformity. Insertion of one or more screens reduced the oncoming 
shear by a factor depending on the screen geometry. In  all cases presented here, the 
mean velocity downstream of screens was found to be unidirectional, with an 
essentially uniform transverse gradient. 

2.3. The development of the Reynolds stresses 
As shown in figure 1 for a few typical cases, the r.m.s. turbulent velocities presented 
a mild transverse non-uniformity that was comparable with or lower than those in 
earlier experiments. Following the practice introduced by Harris et al. (1977), the 
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downstream development of the turbulent characteristics will be plotted versus the 
total strain 

where 0, is the centreline mean speed, x1 is the distance from the exit of the flow 
separator and xg is the downstream. position of the grid, where applicable. A 
summary of the experimental conditions and some reference values of the measured 
quantities are presented in table 1. 

The development of the four dominant Reynolds stresses and the turbulent kinetic 
energy ?== along the wind-tunnel axis is shown in figure 2 for some 
representative conditions ; semilogarithmic coordinates were used for convenient 
comparison with Tavoularis’s (1985) predictions. In all cases, the plots demonstrated 
linear ranges with either positive or nearly zero slopes, corresponding to either 
exponential growth or constancy of the Reynolds stresses. For each set of conditions, 
the rates of growth of all stresses away from the origin were essentially the same. The 
magnitudes of the stresses were always ordered as 2 > 2 > 2 < I G l .  The same 
ordering has been observed by others in uniformly sheared flows as well as in 
inhomogeneous flows with a fixed dominant mean shear direction. The first 
inequality reflects the fact that the streamwise normal stress receives energy directly 
from the mean shear, while the other two normal stresses are maintained by means 
of their coupling to the streamwise stress through pressure-velocity correlations 
(Champagne et al. 1970). Plots of the ratios G/(q), corresponding to the same flow 
generating apparatus but different Qc, essentially collapse when plotted versus the 
total strain (see also Rohr et al. 1988). 

All present and some previous measurements of the turbulent kinetic energy are 
summarized in figure 3. Each set of data away from the origin was fitted by the 
relation (Tavoularis 1985) 

(2) 2 - -3 k(Z1-Zr) 

where x,, 2 are reference values, corresponding to a location near the end of the wind 
tunnel, and k has dimensions of a wavenumber. Based on the least-squares-fitted 
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FIGURE 3. Downstream development of the turbulent kinetic energy. Symbols as in table 1.  
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Case 

A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 
L 
M 
K 
0 
P 
CHC 
R1 
R2 
R3 
R4 
R5 
TC 
s1 
52 
s 3  
54 
s 5  
S6 

k* 
(m-') 
6.56 
6.56 
7.21 
2.95 
3.11 
3.05 
3.08 
3.87 
3.34 
3.74 
1.61 
2.23 
2.23 
2.23 
1.05 
0.69 
1.05 
0.80 
0.58 
0.59 
0.58 
0.61 
3.77 
6.12 
4.75 
4.89 
5.54 
4.71 
4.32 

k 

0.59 
0.62 
0.66 
0.39 
0.39 
0.33 
0.23 
0.36 
0.33 
0.36 
0.13 

-0.02 
-0.07 
-0.03 
-0.01 

0.03 
0 
0 
0 
0 
0 
0 

0.46 
0.55 
0.49 
0.49 
0.49 
0.58 
0.48 

(m-') 4 p  nL 

0.72 0.81 
0.72 - 

0.73 - 
0.61 0.94 
0.63 - 

0.69 - 

0.75 0.77 
0.68 0.75 
0.69 0.71 
0.69 0.79 
0.73 - 

1.02 0.94 
1.09 - 

1.04 - 

1.04 - 

0.87 - 

1.0 ~ 

1.0 - 

1.0 - 

1.0 - 

1.0 - 
1.0 - 

0.57 0.69 
0.72 0.54 
0.68 - 

0.69 - 

0.72 - 

0.61 0.54 
0.65 - 

U H  

R,, (ms-') 
16.1 0.0091 
15.4 0.0081 
15.1 0.0073 
3.9 0.0070 
4.3 0.0063 
4.9 0.0055 
7.0 0.0071 

24.7 0.0076 
22.7 0.0073 
23.8 0.0075 
5.9 0.0057 
8.2 0.0050 
8.9 0.0045 

10.0 0.0040 
4.6 0.0039 
3.57 0.0034 
9.6 0.0046 
8.3 0.0075 
3.2 0.0062 
3.5 0.0054 
7.3 0.0043 

10.7 0.0035 
20.3 0.0070 
14.7 0.0027 
15.1 0.0025 
16.1 0.0027 
11.3 0.0021 
11.5 0.0020 
20.2 0.0020 

T e b s  

3.3 
3.1 
3.4 
2.2 
2.2 
1.9 
2.9 
3.2 

2.8 

2.5 
2.4 
2.5 

2.8 

- 

- 
- 
2.9 
- 
- 
- 
- 
- 
3.7 
6.1 
3.9 
- 
- 
- 
- 

T u b ,  

8.4 
8.4 
8.3 
9.6 
9.3 
8.5 
9.0 
9.9 
9.2 
9.4 
6.7 
6.5 
6.5 
6.5 
6.8 
5.6 
6.1 
- 
- 

- 
___ 
- 

12.5 
8.7 
9.2 
9.1 
8.7 

10.2 
9.6 

TABLE 2. Summary of relevant experimental parameters (conditions as in table 1) 

values of k (table 2) ,  it is possible to distinguish two subclasses of flows : those with 
k close to zero, i.e. flows with roughly constant Reynolds stresses, and those with a 
clearly positive k, i.e. flows with exponentially growing Reynolds stresses. 
Exponential growth is relatively weak and, as Rohr et al. (1988) point out, it is also 
compatible with linear growth if an effective origin is used upstream of the physical 
origin. 

The effect of crossing a grid or screen on the turbulence was manifested by a nearly 
stepwise jump of across the obstruction; near the grid, turbulence is produced by 
the small-scale shear between consecutive jets and wakes of the rods or wires. Grid- 
generated turbulence decays downstream, so that it seems reasonable to assume 
that, away from the grids, turbulence production would almost entirely be due to the 
constant mean shear. 

Figure 4 contains the measurements of the dominant components of the 
dimensionless Reynolds stress tensor 

-- 
K ,  = uiu,/q2. (3) 

In most cases, the values of K ,  in the downstream part of the tunnel were 
practically constant. Differences between the fully developed values of each Kt, for 
different sets of conditions were relatively small. It is interesting to notice that values 
of K,,, K,, and K,, near the flow origin were closer to each other than they were away 
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12 16 20 24 28 

.# + o  

I I 

v v  

0 2 4 6 8 

FIQURE 4 (u, b ) .  For caption see facing page. 

from it. When the flow crossed a screen, the Reynolds stress tensor was reoriented, 
tending towards its isotropic form, but, away from the grid, Ki, resumed an 
anisotropic form that is typical for uniformly sheared flows. This form, averaged over 
all experiments, was 

(4) 

[ 0.51 t0 .04  -O.lS&O.Ol 0 
Ki j  = -0.16+0.01 0.22 f 0.02 0 

0 0.27 f 0.03 

2.4. Integral lengthscales 
The streamwise integral lengthscale L,, of the streamwise velocity fluctuation was 
measured by integrating the corresponding autocorrelation coefficient to its first zero 
and using Taylor’s ‘frozen flow’ approximation. The accuracy of this technique has 
been demonstrated by Comte-Bellot & Corrsin (1971) and has been found to be 
satisfactory by Champagne et al. (1970) and by Tavoularis & Corrsin (1981 a) in the 
case of uniformly sheared flows. 

All present and previous measurements of L,, have been plotted versus streamwise 
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7 

FIGURE 4. Downstream development of the dimensionless Reynolds stresses. Symbols as in 
table 1. (a )  K11; ( b )  K z z ;  (c) K33; (4 -Klz. 

distance in figure 5 (a) using logarithmic coordinates. Within the experimental 
uncertainty, one can represent all data using power laws of the type 

where L, and xrL are reference values. The least-squares fitted values of the exponent 
n, were on average 0.8 with a standard deviation of about 0.1 (table 2). Considering 
the relatively large uncertainty in the lengthscales measurement (random ex- 
perimental error was of the order of 7 %), a linear growth of L,, might also be possible 
as suggested by Harris et al. (1977), Tavoularis & Corrsin (1981a) and Rohr et al. 
(1988). It is interesting to observe that the growth rate of L,, is essentially 
independent of the shear or any other parameter and that it is substantially higher 
than the growth rate in nearly isotropic grid turbulence, where integral lengthscales 
appear to grow according to a power law with an exponent of about 0.4 (see, for 
instance, Sreenivasan et al. 1980). For a given flow generating apparatus, L,, was 
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FIGURE 5. Downstream growth of the streamwise integral lengthscale. Symbols as in table 1.  
(a) Logarithmic coordinates: -, nL = 0.8; --, nL = 1.0; ( b )  semilogarithmic coordinates: -, 
k, = 0.33. 

found essentially independent of the wind tunnel speed, which is another indication 
that the integral lengthscales are not affected by changes of the shear value. 

In order to test the possibility of exponential growth, the same scales have been 
plotted in figure 5(b )  using semilogarithmic coordinates. An expression of the type 

(6) L,, = ekL(+,-z,) 

4 
may be roughly fitted to the data in the range 5 < x,/h < 12, although power laws 
appear to be more successful in describing the entire range of measurements. The 
average value of k, was about 0.33 rn-l (table 2). 

2.5.  Taylor microscales 
The streamwise Taylor microscale was measured as 
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FIGURE 6. Downstream development of the Taylor microscale (Al l ) .  Symbols as in table 1.  

where the streamwise derivative was estimated from the time derivative using 
Taylor’s ‘frozen flow ’ approximation. Figure 6 demonstrates that in most cases A,, 
along the centreline approached constant asymptotes away from the origin. 
Streamwise constancy of A,, was a central assumption in Tavoularis’s (1985) 
predictions of exponential growth of Reynolds stresses and self-preservation of 
turbulence structure. It also implies that the relative magnitudes of production and 
dissipation should remain unchanged. 

3. Analysis and discussion of results 
3.1. DeJinition of scaling parameters 

In an unbounded uniformly sheared flow, the sole externally imposed parameter is 
the value of the mean shear, which represents both the mean vorticity and the mean 
strain rate. This value imposes the characteristic ‘straining ’ time 

7, = (dq/dzJ1. (8) 
In the hypothetical case of unbounded, transversely homogeneous shear flow there 

is neither an external lengthscale nor a velocity scale and further non-dimen- 
sionalization becomes impossible, unless one assigns an arbitrary value to one of 
these parameters. In laboratory generated flows, it has been demonstrated (see also 
Rohr et al. 1988), that the centreline velocity is an appropriate scale for non- 
dimensionalizing the Reynolds stresses. Then it is possible to define a flow generator 
constant, k,, as 

(9) k =r- 
U, dx,’ 

which has dimensions of inverse length. One might anticipate that the value of k, 
could have a qualitative effect on the turbulence structure. The dimensionless total 
strain imposed upon the turbulence at  a particular distance from the origin is simply 

1 an1 

T = ksxl (10) 
For each particular value of k,, a self-preserving structure must be independent 

of 7. 
The average size of the energy-containing turbulent eddies can be represented by 

integral lengthscales, most conveniently the streamwise one, Lll. Such scales 
generally grow downstream from an initial value, which is set by the spacing of the 



468 S.  Tazwularis and U.  Karnik 

flow generating elements. In the absence of grids and screens, this spacing is clearly 
the width of the individual channels of the shear generator and flow separator. When 
one or more grids or screens are inserted, the initial scale appears to be a complicated 
function of upstream flow characteristics, grid mesh size and solidity. I n  a crude way 
one might infer from the present results that  the initial lengthscale is comparable 
with the larger of either the flow separator channel width or grid mesh size. A 
corresponding timescale, which can be interpreted as the ‘turnover time ’ of a typical 
turbulent eddy (Compte-Bellot & Corrsin 1971), is 

7, = L,,/u;. (11) 

Another timescale that is commonly used in turbulcnce modelling is the typical 
‘lifetime ’ of the energy-containing eddies 

7, = ?/€, (12) 

where e is the turbulent kinetic energy dissipation rate. If one further defines a 
characteristic time for transport o f?  by the mean flow as 

- 
7T = (kUJ1, (13) 

where k is the exponent in the stress growth law, is is possible, with the use of the 
simplified kinetic energy equation (Tavoularis 1985), to derive a relation between the 
two latter timescales and 7s as 

3.2. Tests of self-preservation 
‘The hypothesis of self-preserving development of a turbulent flow assumes t h a t  all 
aspects of the motion except those directly influenced by viscosity have similar forms 
at  all stages, the differences being described wholly by changes of velocity and 
lengthscales which are functions of time (in decaying turbulcnce) or of the position 
in the flow direction ’ (Townsend 1976, pp. 60-61). The mean velocity field, Ul(x2), 
obviously meets the criteria of self-preservation, since it is essentially invariant 
within the wind tunnel. Second-order turbulent moments are also self-preserving in 
the bulk of the flow, since their relative magnitudes remain constant, as demonstrated 
by the constancy of all components of K,. This was true for all cases, both those with 
constant and those with growing stresses. Integral lengthscales appear to follow a 
growth pattern, which could be different from that of the kinetic energy. Also, 
relative magnitudes of integral scales in different directions appear to be roughly 
constant for both ‘ low-shear ’ (Champagne et al. 1970) and ‘ high-shear ’ Tavoularis & 
Corrsin 1981 a )  cases. 

In conclusion, all existing evidence supports the hypothesis that uniformly 
sheared turbulence in wind tunnels achieves an approximately self-preserving state 
in which turbulent velocity and lengthscales follow well-defined laws of downstream 
evolution and properly non-dimensionalized quantities remain invariant. 

3.3 Criteria for the evolution of turbulent kinetic energy 
As discussed earlier, it has been possible to identify two subclasses of uniformly 
sheared turbulent flows, namely flows with growing stresses and flows with roughly 
constant stresses. One might then speculate on the existence of a third subclass of 
flows with decaying stresses, which has actually been predicted theoretically for 
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‘extremely weak’ turbulence (e.g. by Deissler 1961, 1965). The experimental 
confirmation of the third subclass is inconclusive. The few cases in Rose’s (1970) 
experiments that he interprets as decaying sheared turbulence are subject to an 
extremely low signal-to-noise ratio; they are also contradicted by his figure 6. Our 
experiments have not yielded any case having a negative value of k that deviated 
from zero by an amount larger than the measuring uncertainty. The limiting case 
dC;/dx, = 0 can, of course, be represented by grid-generated, unsheared turbulence, 
whose second moments decay. However, the unsheared case is a singular limit since 
i t  does not satisfy the assumption c/p = constant, which was the basis for the 
derivation of an exponential law. 

We now proceed to identify parameters that possibly affect the balance between 
production and dissipation and thus the evolution law of the turbulent stresses and 
the turbulent kinetic energy. The mean shear is certainly a relevant parameter, 
because, all other external conditions being the same, an increase of mean shear leads 
from a constant-? flow (Champagne et al. 1970) to a growing-? flow (Harris et al. 
1977; Tavoularis & Corrsin 1 9 8 1 ~ ) .  However, the value of d ~ J d x ,  alone i s  not 
sufficient to determine the energy growth law ; this can be seen by comparing cases 
with about the same shear but different centreline velocities, for examples cases M 
and K versus case F and case L versus case E in table 1. 

Harris et al. (1977) have suggested that i t  is the value of the total strain T that 
determines whether a state of growing stresses has been achieved and that, if ‘low- 
shear ’ flows were permitted to achieve a sufficiently large 7 by extending the wind 
tunnel length, they would also exhibit growing stresses. Rohr et al. (1988) further 
suggest a ‘threshold’ of T x 4 above which turbulence grows. Some of the present 
measurements contradict these hypotheses. As figure 3 demonstrates, the kinetic 
energy in case L was practically constant in the range 4 < r < 8. Although this case 
has the largest lengthscales and, presumably, the strongest wind-tunnel wall 
interference, it seems unlikely that suppression of kinetic energy growth can be solely 
attributed to that effect. It should also be remembered that case L has a self- 
preserving Reynolds stress tensor and integral lengthscales which continue growing 
a t  a constant rate. 

Following Tavoularis ( 1 9 8 ~  the kinetic energy exponent coefficient can be 
expressed as k = -2KI2(1 -E/P) k,, 
where the kinetic energy production is -~ ~ 

- dol P=-u u -. 
2dx, 

The values of the ratio e / P ,  computed from measurements of k and K , ,  using (14), 
are plotted in figure 7 ( a )  versus k,. Based on the value of c / P ,  i t  is possible to identify 
two subclasses of flows, as 

‘low-shear’: s/P e 1,  

‘ high-shear ’ : s/P < 1.  

The scatter of e /P  in the second subclass about the average value 0.68 f 0.06 seems 
to be non-systematic. Using the average values c/P = 0.68 and K,, = -0.16, one can 
derive the relation 

which, as shown in figure 7(6), is compatible with all available measurements at 
sufficiently large k,. It is therefore concluded that the asymptotic growth rate of 4“ 

k x O.lk, (17) 
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FIGURE 7 .  (a) The ratio E / P  and ( b )  the exponent coefficient k, versus k,. Symbols as in table 1. 

in wind-tunnel-confined, uniformly sheared turbulence depends on the flow generator 
constant k,. For small k,, may maintain a constant value, while for large k, it grows 
exponentially ; in the latter case the exponent is proportional to k,, although the ratio 
SIP is independent of k,. Independent estimates of the ratio s / P ,  based on the 
measured Taylor microscale, are compatible with the existence of two distinct 
subclasses. 

The present experiments cover a range of k, that  is substantially wider than those 
in previous ones. Although, in our opinion, the large-k, range has been adequately 
described by (2) and (17), it would have been desirable to further scrutinize the low- 
ks range. Unfortunately, our attempts to decrease ks by using high-solidity screens 
led to inhomogeneous flows. It is also clear that  the uncertainty in the determination 
of k and EIP increases dramatically as k, decreases. 

In addition to the above, we have considered several other possible criteria for the 
evolution of kinetic energy, such as the quantities 

M(or M,) do, L,, d q  L,, dD, 
OC dx,' OC dx,' ui dx,' 
- -- -- 
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None of the tested criteria were successful in separating the two subclasses of flows 
identified above. 

3.4. On Hasen’s stability theory 
In her nonlinear stability analysis of uniformly sheared flows, Hasen (1967) 
concluded that two-dimensional disturbances would decay if their amplitude were 
smaller than a ‘barrier’ velocity and that they would not decay otherwise. She also 
found that the barrier velocity was bounded from above and below by two 
quantities, which were proportional to the velocity 

where 1, is the characteristic length of the disturbances and the Reynolds number 
was defined as 

(19) 
d q l d x ,  1; 

RH = 
V 

Substituting (19) into (18), one gets 

According to this theory, no finite-amplitude, two-dimensional disturbances would 
decay if UH+O, which can occur either when dq/dx,  = 0 or when I ,  ir 00. 

Consequently, one might speculate that the lower U, for a flow is, the ‘more 
unstable ’ the flow would be. This appears to contradict the intuitive expectation 
that, for given 1, and v ,  a flow should become ‘more stable’ as dq/dx, decreases. On 
the other hand, the implication of increased stability as I ,  grows is compatible with 
intuition. Rose’s (1970) attempt to correlate his results with Hasen’s theory is not 
conclusive in our opinion, first because, as indicated earlier, his few cases of alleged 
decaying turbulence are questionable, and second because his study addresses only 
the effect of lengthscale and does not take into account the amplitude of disturbances. 
In grid turbulence, amplitudes and scales are inherently coupled, as demonstrated by 
the fact that the energy decay law is a function of grid mesh size. A proper test of 
Hasen’s theory should involve a laminar shear flow and disturbances with 
independently controlled amplitudes and wavelengths. In any case, calculations of 
U, based on maximum apparatus spacing (table 2) show that, in general, large 
values of U, correspond to growing (unstable?) turbulence, in contrast to 
implications of Hasen’s theory. In view of this discussion, the apparent success of 
using U, as a criterion for the evolution of (Karnik & Tavoularis 1983) might be 
coincidental. The present discussion is consistent with that of Rohr et al. (1988). 

3.5. Sealing of the turbulent stresses 
A general feature of self-preserving turbulent shear flows such as two- and three- 
dimensional wakes, jets, plumes etc. is that the ‘effective Reynolds number’ 

AUl 
R ’ = T  

(AU is a characteristic mean velocity difference, 1 is a transverse length characteristic 
of the mean flow extent and vT = - ~ u z / ( a ~ / a x , )  is the ‘eddy viscosity’) shows 
small variation within each class of flows and has values comparable with the lower 
critical Reynolds number for laminar instability (Corrsin 1957). The applicability of 
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FIGURE 8. Variation of the ‘effective Reynolds number’ based on Lll. Symbols as in table 1. 

such a postulate to uniformly sheared flows is quite plausible, in view of their 
reasonable transverse homogeneity. 

The parameters AU and 1 are, most likely, related to the imposed timscale r, as 

= Ti1, AU d q  
1 dx, 
_-  -- 

which leads to the following expression for R,: 

(dq/dx,)2 l2 R, = - 
-K,,q2 ’ 

containing 1 as the sole unspecified quantity. A lengthscale that might be appropriate 
as 1 is the integral lengthscale, L,,, Figure 8 shows that the corresponding Reynolds 
number, RTL, generally increases with increasing total strain for small values of r.  In 
rcgions where as exponential kinetic energy growth has been established, R,, 
presents a very small variation, reflecting the fact that  the growth rates of stresses 
and L,, in such cases are not very different. A proposition that is equivalent to the 
universality of R,, has been made by Harris et al. (1977). We note, however, that 
their figure 5 appears to contain a numerical error reducing the difference between 
‘low-shear ’ and ‘ high-shear ’ results. All present measurements at large T have R,, 
values in the range 3 M 0 ,  which is also the case for some of Rohr et aZ.’s (1988) 
results. The asymptotic value for the Tavoularis &, Corrsin (1981 a )  experiments was 
about 57. 

L,, is not an cxtcrnally imposed scale; however, as mentioned earlier, its starting 
value is related to the spacing of the flow generator. When measurements of L,, are 
not available, it would be useful to define R, based on a clearly defined external 
length. Among other choices, it seems that variation ofR, is reduced if the maximum 
among the spacings between the elements in the shear generator and/or grids or 
screens is used as 1. The so computed R,, (table 2) presents a variation between 3.2 
and 10.7 for the constant-stress cases, which is quite small, considering that the 
stresses themselves range over four orders of magnitude. In  the cases with growing 
stresses, R,, decreases monotonically downstream but its variation among different 
cases is also relatively small. 
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A related quantity, the ratio of eddy turnover time over the straining time, 

also has a relatively narrow range (table 2),  taking values between 1.9 and 3.7. The 
ratio of eddy lifetime over the straining time 

has nearly constant asymptotic values, which are about 6.5 for the ‘low-shear’ and 
9.0 for the ‘ high-shear ’ flows. 

3.6. An ‘exact’ expression for the pressure-strain rate covariance tensor 
For transversely homogeneous flows with uniform mean shear, the balance equation 
for the Reynolds stress tensor is simplified to 

which, in condensed form, becomes 

T.. Y = p..+q5..-2e 23 a? Z?’. (27) 
The mean convection term, Ti, can be computed exactly for the two subclasses of 

flows with either constant or exponentially growing stresses as 

This form of Ti happens to be identical to the one deduced from Rodi’s (1976) 
algebraic stress model. The ‘production ’ tensor can be written as 

and has only two independent non-zero components, Pll and P12. 
After rearranging the various terms and without any further assumption or 

approximation, the pressure-strain rate covariance, made dimensionless with the 
production P,  takes the following form for the present class of flows: 

where the anisotropy tensors of Reynolds stresses and dissipation rate are defined as 

(31) m.. 23 = K  i5 -1.6 3 r j ,  

3.7. O n  the anisotropy of the turbulent stresses and the dissipation rate 
Figure 9 summarizes the measurements of anisotropy of the Reynolds stress tensor, 
plotted versus the flow generator constant k,. The data contain significant scatter, 
which could be partly attributed to imperfections in the apparatus and, to a lesser 
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FIGURE 9. Dependence of the Reynolds stress tensor anisotropy on the flow generator constant,, 
k,. Symbols as in table 1. 

extent, to measurement inaccuracies. However, it is evident that  ' low-shear ' cases 
( k ,  < 2) have somewhat lower anisotropies of the diagonal components of Kij than 
'high-shear' cases have and that, for k,  > 2, mij is practically constant. The cross- 
anisotropy mI2 does not appear to vary at all with k,. 

The anisotropy of the dissipation rate tensor is hard to measure or even estimate 
accurately, although previous investigators agree that eii is non-isotropic. Weinstock 
& Burk (1985) have integrated spectra measured by Champagne et al. (1970) to 
derive the values 

- = 0.36, 8,, = 0.30, 633 = 0.34. 
€ P 6 

The only available measurements of velocity derivates (Tavoularis & Corrsin 
1981 b) in a high-shear flow indicate a much stronger streamwise anisotropy, as 

- = 0.6, 
& 
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and the spectra measured by Tavoularis & Corrsin (1981 a) ,  show that eZ2 and E~~ may 
not vary significantly from each other, which implies that 

€22 €33 - x - Z 0.2. 
€ €  

It is interesting to note that in a large-scale simulation of uniformly sheared 
turbulence, Feiereisen et al. (1982) found that d, is roughly proportional to mii with 
coefficient 0.85 for all stresses when the turbulent Reynolds number was in the range 
between 15 and 120. This leads to  the relation 

% z 0.85Ki, + 0.05Sij, (33) 
E 

with the typical values 

€12 5 z 0.48, !?? ~ 0 . 2 4 ,  k z  0.28, - -w -0.14. 
8 € € € 

3.8. Comments on some turbulence models 
Among the most successful and popular turbulence models are the various ‘second- 
order ’ closure schemes. Drawing an analogy with the constitutive laws of materials 
in continuum mechanics, these models attempt to  express the physical properties of 
turbulence in a universal mathematical form (for a comprehensive discussion, see 
Lumley 1978). All models contain a number of adjustable numerical coefficients, 
which are usually evaluated from measurements in flows with simple geometry, such 
as nearly isotropic turbulence and uniformly sheared turbulence. The application of 
a general model to a ‘simple’ flow and the subsequent generalization of the results 
require a great deal of caution. As an illustration of some inconsistencies that may 
arise from the indiscriminate use of measurements such as the present ones in model 
constant evaluation, we shall present the following discussion, which focuses upon 
the pressure-strain rate correlation, &. This tensor has been the object of modelling, 
since, in general, it cannot be measured or evaluated theoretically in terms of other 
parameters. Following Rotta’s (1951) analysis, $%j is customarily decomposed into 
two parts 

a3 23.1 23,2’ 

which represent, respectively, effects of fluctuations and of mean strain rate and are 
modelled separately. A number of frequently used models (Rotta 1951 ; Naot, Shavit 
& Wolfshtein 1973; Launder, Reece & Rodi 1975) can be represented by a general 
form, which, when applied to uniformly sheared flows, becomes 

$..=$.. +$.. (34) 

where repeated indices are not summed. Comparing the ‘exact ’ equation (30) and the 
modelled equation (35), one may observe that they both contain two terms, one 
proportional to  c / P  and another which may depend on c / P  only implicitly through mij 
and Cii,2 respectively. Since dependence of mi* on s / P  is rather weak for uniformly 
sheared flows, a t  least for large values of k,, one may consider the possibility that the 
corresponding two terms of (30) and (35) match separately, which implies that 

16 FLM 204 
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As it is generally accepted that the dissipation anisotropy vanishes a t  large 
Reynolds numbers, one might further speculate that 

Cij,l+l as RA+co, 

in which case the relevant components of Cii,2 would simply be 

C11,z = - K d j  C22,2  = 3Kzzj (38% b )  

Ki2 
K22 

C,,,, = 3K3,, C,,,, = 1-2-.  

It is then obvious that the tensor Cij ,2  can be reduced to a scalar only when 

K22 = K33, K12 = W22(K,,-K221~. (39% b)  

Instead of requiring satisfaction of conditions (39), one may approximate Cij,z by 
a scalar obtained by averaging (38), i.e. 

The previous approach was based upon the assumption that Kij  was independent 
of s/P. In  general, however, modellers have not employed this assumption but 
computed values of Cij,l and Ci,,2 that  satisfy particular experimental conditions. 
This approach will reproduce the proper values of mil, provided that a sufficient 
number of constants are adjusted to the measurements of K t j .  If, for example, one 
computes the eight independent components of C6j,l and Ci,,? by using the values of 
Ktj in the experiments of Champagne et al. (1970) and Harris et al. (1977) and uses 
these values to ‘postdict’ K,, the ‘postdiction’ of Kt, in these two cases will be 
perfect. More sophisticated evaluations of constants have included the effect of 
dissipation anisotropy (Weinstock & Burk 1985) through spectral estimates based on 
measurements. 

Nevertheless, considering (30), one is tempted to observe that any need for 
constant evaluation would be eliminated if one assumed forms for $ii,l and q5ii,2 that 
in large-a,, homogeneous, uniformly sheared flow reduce to 

#ij,l = -2(K<j-$dtj)c, (41) 

It might also be illuminating to point out that  if, for a moment, one assumes that 
dij w mij, equation (30) takes the extremely simple form 

which, although not of general applicability to inhomogeneous turbulence, may well 
approximate results in uniformly sheared flows. 

We shall close this discussion by presenting values of K,, computed by equating 
(30) and (35)  and assigning values to the model constants. For simplicity, we have 
only considered the case of isotropic su. I n  table 3, cases Ia  (‘low-shear’, c /P  w 1.0) 
and I b (‘ high-shear ’, s /P  x 0.68) correspond to the commonly used scalar values 
Cij,l = 1.8 and Cij,2 = 0.6. Cases IIa and IIb are independent of the ratio e /P  and 
correspond to the value of C{l,l = 1.0 and the ‘custom fitted’ Cii,2 through (38) (case 
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Case EIP Cl c,,., CZ,,, G . 2  C33.2 Kll K22 K83 -K,2 

Ia 1.0 1.8 0.60 0.60 0.60 0.60 0.48 0.26 0.26 0.17 
Tb 0.68 1.8 0.60 0.60 0.60 0.60 0.51 0.245 0.245 0.18 
I1 a Any 1.0 0.73 0.66 0.81 0.77 0.51 0.22 0.27 0.16 
IIb Any 1.0 0.74 0.74 0.74 0.74 0.51 0.245 0.245 0.18 

TABLE 3. ‘Postdicted’ values of Reynolds stresses 

IIa) or the average through (40) (case IIb). All of the above combinations of 
constants, and possibly many others, demonstrate reasonable agreement with 
measurements, although it is evident that  the anisotropy of Kti can be only 
‘posdicted ’ if a tensorial form of the constants is employed. 
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